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A study is made of the properties of conducting systems with fixed
boundary conditions on the bases of the phenomenological equations
of the thermodynamics of irreversible processes.

‘An examination has been made in [1] of the behaviox
of through flows in the simple case when the processes
occurring in the system are not interrelated, or when
they are all due to the action of a single force. We
shall now generalize the results obtained there by
assuming that there are several interrelated flows
and that several forces are acting simultaneously.

In addition, we shall also examine the question of
the nature of the direct interconnection between dif-
ferent flows when the system goes over into the non-
equilibrium stationary state.

Let a system be described by n independent inten-
sive parameters yi; ¥y ---> Yp- We assume that for
the flows the linear relations
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are satisfied, and that the forces and the coefficients
may be represented in the form
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For a one~dimensional system, grad ¢, = dd% . There-
fore *
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Later on it will be assumed that the coefficents ¢jr
do not go to zero.f If, for example, yog = 0, this
means that the nature of the distribution of the param-
eter yg has no influence on the value of flux I .

We now assume that the system attains the station-
ary state described by the following distribution of the

TThe coefficients ¢jr must retain the sign of [a, b].

parameters:

g0 =Y, (0, r=12 ..,n (4

Starting from this state, we vary some curve ¥y (%),
keeping the boundary values y7 unchanged and a fixed
distribution of the remaining independent parameters
throughout the system. According to Egs. (3) and (4),
we obtain
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We designate

2, (x) = y; () ~ Y {x),
Ay =pj (%, y) —j; (%, Y)),
AFJ'I = Fil (X, yl) _Fjl (x, Yl).
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By choosing the direction of the OX axis, we make
Ijst > Q.

Under the above-mentioned variation of the curve
y7{x), the through flow in the stationary state Ijgiy. gt
(j=1,2,...,n) is larger than the flux Isty in any
other state compatible with the conditions of variation.

To prove this statement, as in [1}, with zpjl(x, \7Re
> 0 we shall examine the neighborhood of some point
£(z7 (§) = 0), where z] (x) <0 and when |§ — x| =]¢ -

2, (xy)

2‘; (%)
¥yl (x, yy) < 0 we shall examine the neighborhood of
the point ng, where the same conditions are satisfied,

- %], < A = const is satisfied while with

fFor the point £, to exist, we require the same con-
ditions as for ¢ in [1]. It is sufficient, for example,
that z(x) in [a, b] be piecewise~analytic.
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but zi(x) > 0. In the above-mentioned neighborhood we
may put

Ay =, (x, Yz, by,

AF;=F (x,Q)z,(0) (x—§), (5)
where F; = —af"_l, it being true that OF < D = const,
Oy, 9y,

and Q and @ are some numbers satisfying the relations

[Q—Y,| +1Q—=Y,—z|=\z]
and
|O—Ej+10—x| =|E—x|.

As was shown in [1], lim &; = 1. Therefore
x~§
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Since \/; =\, ‘ 1 Mo ) then for x values suf-
A M

ficiently close to &, the sign of Alj is determined by
that of Aj7 . But, as may be seen from (5, for some
X =1, Ay (1) <0. Therefore, 1j(7) < Tjg(f) = Ijgy-
Hence we obtain Ijgtr < Iigty . st

Particular attention should be paid to the case when
'“'jr (jyr=1,2,...,n is a function only of y, or may
be considered in general to be a constant coefficient.
It is then easy to show that even simultancous change
of all the parameters leads to a reduction of the
through flows in comparison with their stationary-
state values.

In fact, on the basis of Eq. (3), the flux may be
represented in the form

C dy .
= (Y, L, ji=12,.,n
i g‘l’,r (¥r) dx I
Further,
b n b ()
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since the values of all the parameters y (@) = Y«
and ypr(h) = Yp(h) are kept constant at the boundaries
of the system. If we assume that at all points x of the
intercept {@, b], Ij(x) =Tjgt, I > Ijst strictly for some
points, then

b b

Jlj(x)dx> glistdx’

a [

which is impossible. There must therefore exist
some ¢, for which I§(¢) < Ijg¢. Hence

Tisg < Lisur. ot

Turning now to a study of the direct interrelation
between different flows, we shall examine (1) with
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We assume that the selected flows and forces cor—
respond to the equation

o=IX 41X,

Now let it be that the conducting system is removed
from the equilibrium state by the action of some other
factor. Let, for example gi(@) # ¢,(b), while @yla) =

= @y(b) (see Eq. (2)). In accordance with this, we
shall call I; the main flux, and I, the secondary flux.
We represent the main flux in the form

Iy = (Lyy = Lig Ly /Lan) Xy + (Ly1p'Lay) - (6)

Here, Lyy/Ly is the value of flux I; transported by

unit flux of I, in excess of the value created directly

by force X;. If we have a discrete system, X;=

= fyl@y(b) — @ya@)] = 0. In the case of a continuous sys-
tem, according to the Rolle theorem, there also exists
a section at which X,= 0.

When Xy = 0, the directions of I; and I, coincide if
L1 Ly; > 0, and they are opposite, if LjjLy < 0.
According to the Onsager reciprocal relation, Ly =
Ly,

= Lyy. Therefore L, L,; =L, L,, . But Lj; Lg; > 0,

and the sign of LijLy is determined by that of Lyy/Ly,.
Hence the secondary flux Iy always has a direction
such that the contribution it makes to Eq. (6) increases
the main flux I;.

This phenomenological rule is applicable in dif-
ferent cases, independently of their molecular-kinetic
nature. It expresses generally what is characteristic
for the interrelation of any inhomogeneous processes.
If the flows are dependent, i.e., I,= f{I}), then the
result obtained is trivial. The cases are more in-
teresting when the flows are not connected by the
above functional relation. As an example of this kind
we shall examine thermal osmosis—the percolation of
a gas through rubber membrane due to a temperature
difference [2].

Since the thermostats which maintain the tempera-
ture difference may be changed by energy only in the
form of heat, it is convenient to choose, as Prigogine
[3] has done, a system of forces and {lows such that

h =[e——-H1m,
Xy = —ATT",

L=I,,

By maintaining the same pressure at different tem-
peratures on the two sides of the membrane, we
achieve the condition

Xo=—VAP/T =0, X, =—AT/T? = const =£ 0.

Then I; will represent (to an aceuracy up to I;AH) the
heat flow from the hot thermostat to the cold one,
while Lia/Lg; = Q* is the so—called heat of transport
[2, 3].

The conditions for which the phenomenological rule
was formulated are satisfied, and we may draw the
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following conclusion. Whatever may be the direction
of the flow of matter—from the cold side of the mem-
brane to the hot side, or vice versa—this flow, by

its appearance, always increases the transfer of heat
from the hot reservoir to the cold one.

Thermal osmosis may also be observed under other
conditions by permitting change of the boundary values
of pressure for the system. This is obtained if two
closed vessels filled with gas are joined by means of a
membrane and different temperatures are maintained in
them. The flow of matter will gradually decrease, but
at any instant of time its direction corresponds to the
above rule.

The same result is obtained for cyclic thermal
osmosis. In order to observe this phenomenon, the
above-mentioned vessels must be joined in two places
by membranes to which correspond different heats of
transport, Q¥ and Q. Then a cyclic mass flow is
created, which will exist as long as the temperature
difference is maintained. Independently of the signs
of Qf and QF, the mass flow arises in a direction
such as to increase the heat flow from the hot ther-
mostat to the cold one.

From this point of view, it is interesting to com-
pare cyclic thermal osmosis and the thermoelectric
effect. The two phenomena are outwardly and funda-
mentally similar.

It is known that if the junction of two different
metals is maintained at different temperatures, a flow
of electricity is created in addition to the flow of heat.
Due to the Peltier effect, heat is liberated at one junc-
tion and absorbed at the other. The current flows in
such a direction that heat is absorbed in the hot junc-
tion and liberated at the cold one. In other words, the
phenomenon of the electric current is associated with
an increase of heat flow from the hot source to the
cold.
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Thus, if, under the action of some factor or other
(in our examples a temperature difference), a con-
ducting system is brought from an equilibrium state
into a nonequilibrium stationary state, then a secon-
dary process occurs and is directed in such a way as
to increase the main process.

NOTATION

a, b are the coordinates of origin and end of one-
dimensional conducting system; Ijst is the flux I in
the stationary state; Ijstr is the through flux corre-
sponding to Ij in the nonstationary state; Ig is the total
energy flux; Iy, is the mass flux expressed in moles;
o is a quantity describing the rate of entropy produc-
tion; T is the temperature on one side of membrane;
AT is the temperature difference between two sides of
membrane, small in comparison with T; P, AP are
the pressure and small pressure difference on two
sides of membrane, respectively; V is the mole vol-
ume of gas at inlet side of membrane; H and AH are
the molar enthalpy of gas at inlet side of membrane,
and difference in molar enthalpies on two sides of
membrane, respectively.
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